Riboflavin

From: $7.99

Vitamin B2

Clear
Categories: ,

Description

Free of: Added sugar, soy, dairy, yeast, gluten, and additives.

What is Riboflavin?  Riboflavin is an essential human nutrient that is a heat-stable and water-soluble flavin belonging to the vitamin B family. Riboflavin is a precursor of the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These coenzymes are of vital importance in normal tissue respiration, pyridoxine activation, tryptophan to niacin conversion, fat, carbohydrate, and protein metabolism, and glutathione reductase mediated detoxification. Riboflavin may also be involved in maintaining erythrocyte integrity.

History of Riboflavin  The name “riboflavin” comes from “ribose” (the sugar whose reduced form, ribitol, forms part of its structure) and “flavin”, the ring-moiety which imparts the yellow color to the oxidized molecule (from Latin flavus, “yellow”). The reduced form, which occurs in metabolism along with the oxidized form, is colorless.

“Vitamin B” was originally considered to have two components, a heat-labile vitamin B1 and a heat-stable vitamin B2. In the 1920s, vitamin B2 was initially thought to be the factor necessary for preventing pellagra. In 1923, Paul Gyorgy in Heidelberg was investigating egg-white injury in rats; the curative factor for this condition was called vitamin H, which is now called biotin. Since both pellagra and vitamin H deficiency were associated with dermatitis, Gyorgy decided to test the effect of vitamin B2 on vitamin H deficiency in rats. He enlisted the service of Wagner-Jauregg in Kuhn’s laboratory. In 1933, Kuhn, Gyorgy, and Wagner found that thiamin-free extracts of yeast, liver, or rice bran prevented the growth failure of rats fed a thiamin-supplemented diet.

Further, the researchers noted that a yellow-green fluorescence in each extract promoted rat growth, and that the intensity of fluorescence was proportional to the effect on growth. This observation enabled them to develop a rapid chemical and bioassay to isolate the factor from egg white in 1933. The same group then isolated the same preparation (a growth-promoting compound with yellow-green fluorescence) from whey using the same procedure (lactoflavin). In 1934, Kuhn’s group identified the structure of so-called flavin and synthesized vitamin B2, leading to evidence in 1939 that riboflavin was essential for human health.

Production of Riboflavin  Riboflavin can be produced microbiologically. At present, the microorganisms Bacillus subtilis, the ascomycetes Eremothecium ashbyii, Ashbya gossypii, and the yeasts Candida flareri and Saccharomyces cerevisiae are used. The nutrient media employed are molasses or plant oils as carbon source, inorganic salts, amino acids, animal or plant peptones and proteins, as well as vitamin additives. In a sterile aerobic submerged process, yields much higher than 10 grams of riboflavin per liter of culture broth are obtained in a few days with good aeration and stirring at temperatures below 30 °C. After separation of the biomass, evaporation and drying of the concentrate, an enriched product with a vitamin B2 content of up to 80% is obtained. The majority of the riboflavin produced by fermentation is used in animal feeds.

  Warning: Do not use this product for anything other than its intended purpose.  Misuse of our products will result in permanent account suspension and can lead to harm, injury, or death.  Professional use only.

Reviews

There are no reviews yet.

Be the first to review “Riboflavin”
Skip to content